

Welcome to MESS’s documentation!

	Installation

	Intro CLI Tutorial

	Intro API Tutorial

	ML Inference

	Community Assembly Parameters

	API Documentation

The code is on github [https://github.com/messDiv/MESS]

Experiment with the MESS model now! Launch the binder instance below and you
can open and run the notebooks in the jupyter-notebooks directory.

[image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/messDiv/MESS/master]

Installation

MESS requires Python >= 3.5. Binaries can be downloaded with conda [https://conda.io/docs/] or built with pip [https://pip.readthedocs.io/en/stable/].

Method 1: Install pre-built binary from conda

	Download anaconda [https://www.anaconda.com/download/] or miniconda [https://conda.io/miniconda.html].

	(Optional) create a separate conda environment [https://conda.io/docs/user-guide/tasks/manage-environments.html] to install into:

conda create -n mess-env
source activate mess-env

	Install:

conda install -c mess -c conda-forge -c anaconda -c r mess
#conda install mess openblas dendropy -c mess -c conda-forge -c anaconda

See venv [https://docs.python.org/3/tutorial/venv.html] to install into a virtual environment.

Intro CLI Tutorial

MESS - Massive Eco-Evolutionary Synthesis Simulations

Example CLI:

Create a new params file and populate with default values
MESS -n neutral_model

<edit params-neutral_model.txt>

Generate 10000 simulations
MESS -p params-neutral_model.txt -s 10000

Validate format of empirical data from a directory (proper formatting will be checked)
MESS -i empirical_dir

Perform abc model selection (competition model also previously simulated)
Both neutral and competition models should have been simulated for a similar
number of replicates, MESS will check for this.
MESS -i empirical_dir --abc params-neutral_model.txt params-competition_model.txt

Perform random forest model selection (competition model also previously simulated)
MESS -i empirical_dir --RF params-neutral_model.txt params-competition_model.txt

Estimate parameters of empirical data for a given model
TODO: Figure out how to specify which parameters to estimate?
MESS -i empirical_dir -p params-neutral_model.txt --estimate_params

Generate fancy plots through time for a given model. This will
only run one realization and create several animated gifs <slow>
MESS -p params-neutral_model.txt --fancy-plots

The code is on github [https://github.com/messDiv/MESS]

Intro API Tutorial

MESS - Massive Eco-Evolutionary Synthesis Simulations

Example API:

import MESS

A mess region contains all universal parameters of the model, metacommunity
information, and one or more local communities that can be connected
data = MESS.Region("my_first_sim")

Define the metacommunity model
data.set_metacommunity("logseries")

Add local communities to the region
loc1 = data.add_local_community("Island1", J=5000, c=0.01)
loc2 = data.add_local_community("Island2", J=1000, c=0.05)

Define the potentially asymmetric migration matrix
Migration matrix should be square with dimension equal to # of local communities and,
diagonal elements == 0
data.migration_matrix([[0, 0.05], [0.05, 0]])

Run the simulation for x number of generations
data.simulate(nsims=100000)
Alternatively simulate until some proportion of equilibrium is reached
results = data.simulate(lambda=0.7)

print(results)

Inference Procedure

The code is on github [https://github.com/messDiv/MESS]

ML Inference

Supported Ensemble Methods

MESS currently supports three different scikit-learn ensemble methods for
classification and parameter estimation:

	RandomForest (rf):

	GradientBoosting (gb):

	AdaBoost (ab):

Model Selection

Parameter Estimation

Community Assembly Parameters

The parameters contained in a params file affect the behavior of various parts
of the forward-time and backward-time assembly process. The defaults that we
chose are fairly reasonable values as as starting point, however, you will
always need to modify at least a few of them (for example, to indicate the
location of your data), and often times you will want to modify many of the
parameters.

Below is an explanation of each parameter setting, the eco-evolutionary process
that it affects, and example entries for the parameter into a params.txt file.

simulation_name

The simulation name is used as the prefix for all output files. It should be a
unique identifier for this particular set of simulations, meaning the set of
parameters you are using for the current data set. When I run multiple related
simulations I usually use names indicating the specific parameter combinations
(e.g., filtering_nospeciation, J5000_neutral).

Example: New community simulations are created with the -n options to MESS:

create a new assembly named J1000_neutral
$ MESS -n J1000_neutral

project_dir

A project directory can be used to group together multiple related simulations.
A new directory will be created at the given path if it does not already exist.
A good name for project_dir will generally be the name of the community/system being
studied. The project dir path should generally not be changed after simulations/analysis
are initiated, unless the entire directory is moved to a different location/machine.

Example entries into params.txt:

/home/watdo/MESS/galapagos ## [1] create/use project dir called galapagos
galapagos ## [1] create/use project dir called galapagos in cwd (./)

generations

This parameter specifies the amount of time to run forward-time simulations.
It can be specified in a number of different ways, but overall time can be
considered either in terms of Wright-Fisher (WF) generations or in terms of Lambda.
For WF generations you should specify an integer value (or a range of integer values)
which will run the forward-time process for WF * J / 2 time-steps (where a time-step
is one birth/death/colonization/speciation event). For Lambda you may select
either an exact Lambda value (a real value between 0 and 1 exclusive), or you
can set generations equal to 0, which will draw random Lambda values between
0 and 1 for each simulation.

Example entries into params.txt:

0 ## [2] [generations]: Sample random Lambda values for each simulation
100 ## [2] [generations]: Run each simulation for 100 WF generations
50-100 ## [2] [generations]: Sample uniform between 50-100 WF generations for each simulation

community_assembly_model

With this parameter you may specify a neutral or non-neutral scenario for
the forward time process. There are currently three different options for
this parameter: neutral, filtering, or competition. The neutral
case indicates full ecological equivalence of all species, so all
individuals have an equal probability of death at each time-step. In the
filtering and competition models survival probability is contingent
on proximity of species trait values to the environmental optimum, or distance
from the local trait mean, respectively. You may also use the wildcard *
here and MESS will randomly sample one community assembly model for each
simulation.

Example entries into params.txt:

neutral ## [3] [community_assembly_model]: Select the neutral process forward-time
filtering ## [3] [community_assembly_model]: Select the environmental filtering process
* ## [3] [community_assembly_model]: Randomly choose one of the community assembly models

speciation_model

Specify a speciation process in the local community. If none then no
speciation happens locally. If point_mutation then one individual
will instantaneously speciate at rate speciation_prob for each forward-time
step. If random_fission then one lineage will randomly split into
two lineages at rate speciation_prob with the new lineage receiving
n = U~(1, local species abundance) individuals, and the parent lineage
receiving 1 - n individuals. protracted will specify a model of
protracted speciation, but this is as yet unimplemented.

Example entries into params.txt:

none ## [4] [speciation_model]: No speciation in the local community
point_mutation ## [4] [speciation_model]: Point mutation specation process

mutation_rate

Specify the mutation rate for backward-time coalescent simulation of
genetic variation. This rate is the per base, per generation probability
of a mutation under an infinite sites model.

Example entries into params.txt:

2.2e-08 ## [5] [mutation_rate]: Mutation rate scaled per base per generation

alpha

Scaling factor for transforming number of demes to number of individuals.
alpha can be specified as either a single integer value or as a range
of values.

Example entries to params.txt file:

2000 ## [6] [alpha]: Abundance/Ne scaling factor
1000-10000 ## [6] [alpha]: Abundance/Ne scaling factor

sequence_length

Length of the sequence to simulate in the backward-time process under
an infinite sites model. This value should be specified based on the
length of the region sequenced for the observed community data in bp.

Example entries to params.txt file:

570 ## [7] [sequence_length]: Length in bases of the sequence to simulate

S_m

S_m specifies the total number of species to simulate in the metacommunity. Larger
values will result in more singletons in the local community and reduced rates
of multiple-colonization.

Example entries to params.txt file:

500 ## [0] [S_m]: Number of species in the regional pool
100-1000 ## [0] [S_m]: Number of species in the regional pool

J_m

The total number of individuals in the metacommunity.

Example entries to params.txt:

0 ## [9] allow zero low quality bases in a read
5 ## [9] allow up to five low quality bases in a read

speciation_rate

Example entries to params.txt:

2 ## [2] [speciation_rate]: Speciation rate of metacommunity

death_proportion

Example entries to params.txt:

0.7 ## [3] [death_proportion]: Proportion of speciation rate to be extinction rate

trait_rate_meta

Example entries to params.txt:

2 ## [4] [trait_rate_meta]: Trait evolution rate parameter for metacommunity

ecological_strength

This parameter dictates the strength of interactions in the environmental
filtering and competition models. As the value of this parameter approaches
zero, ecological strength is reduced and the assembly process increasingly
resembles neutrality (ecological equivalence). Larger values increasingly
bias probability of death against individuals with traits farther from
the environmental optimum (in the filtering model).

In the following examples the environmental optimum is 3.850979, and the
ecological strength is varied from 0.001 to 100. Column 0 is species ID,
column 1 is trait value, column 2 is unscaled probability of death, and
column 3 is proportional probability of death. Models with strength of
0.001 and 0.01 are essentially neutral. Strength of 0.1 confers a slight
advantage to individuals very close to the local optimum (e.g. species ‘t97’).

Ecological strength of 1 (below, left panel) is noticeably non-neutral (e.g. ‘t97’
survival probability is 10x greater than average). A value of 10 for this
parameter generates a _strong_ non-neutral process (below, center panel: ‘t97’ is 100x less
likely to die than average, and the distribution of death probabilities is
more varied). Ecological strength values >> 10 are _extreme_ and will probably
result in degenerate behavior (e.g. strength of 100 (below, right panel) in which
several of the species will be effectively immortal, with survival probability
thousands of times better than average).

Example entries to params.txt:

1 ## [5] [ecological_strength]: Strength of community assembly process on phenotypic change
0.001-1 ## [5] [ecological_strength]: Strength of community assembly process on phenotypic change

name

Example entries to params.txt:

island1 ## [0] [name]: Local community name

J

Example entries to params.txt:

1000-2000 ## [1] [J]: Number of individuals in the local community

m

Example entries to params.txt:

0.01 ## [2] [m]: Migration rate into local community

speciation_prob

Example entries to params.txt:

0 ## [3] [speciation_prob]: Probability of speciation per timestep in local community
0.0001-0.001 ## [3] [speciation_prob]: Probability of speciation per timestep in local community

API Documentation

This is the API documentation for MESS, and provides detailed information
on the Python programming interface. See the Intro API Tutorial for an
introduction to using this API to run simulations.

Simulation model

Region

Metacommunity

Local Community

Inference Procedure

	
class PTA.inference.Ensemble(empirical_df, sims='', algorithm='rf', verbose=False)

	The Ensemble class is a parent class from which Classifiers and Regressors
inherit shared methods. You normally will not want to create an Ensemble
class directly, but the methods documented here are inherited by both
Classifier() and Regressor() so may be called on either of them.

The base Ensemble class takes care of reading in the empirical dataframe,
calculating summary stats, reading the simulated date, and reshaping the sim
sumstats to match the stats of the real data.

	Attention

	Ensemble objects should never be created directly. It is a base class that provides functionality to Classifier() and Regressor().

	
cross_val_predict(cv=5, features='', quick=False, verbose=False)

	Perform K-fold cross-validation prediction. For each of the cv folds,
simulations will be split into sets of K - (1/K) training simulations
and 1/K test simulations.

Note

CV predictions are not appropriate for evaluating model
generalizability, these should only be used for visualization and
exploration.

	Parameters

	
	cv (int) – The number of K-fold cross-validation splits to perform.

	quick (bool) – If True skip feature selection and
hyper-parameter tuning, and subset simulations. Runs fast but does
a bad job. For testing.

	verbose (bool) – Report on progress. Depending on the number of CV
folds this will be more or less chatty (mostly useless except for
debugging).

	Returns

	The array of predicted targets for each set of features when
it was a member of the held-out testing set. Also saves the results
in the Estimator.cv_preds variable.

	
cross_val_score(cv=5, quick=False, verbose=False)

	Perform K-fold cross-validation scoring. For each of cv folds
simulations will be split into sets of K - (1/K) training simulations
and 1/K test simulations.

	Parameters

	
	cv (int) – The number of K-fold cross-validation splits to perform.

	quick (bool) – If True skip feature selection and
hyper-parameter tuning, and subset simulations. Runs fast but does
a bad job. For testing.

	verbose (bool) – Report on progress. Depending on the number of CV
folds this will be more or less chatty (mostly useless except for
debugging).

	Returns

	The array of scores of the estimator for each K-fold. Also
saves the results in the Estimator.cv_scores variable.

	
dump(outfile)

	Save the model to a file on disk. Useful for saving trained models
to prevent having to retrain them.

	Parameters

	outfile (str) – The file to save the model to.

	
feature_importances()

	Assuming predict() has already been called, this method will return
the feature importances of all features used for prediction.

	Returns

	A pandas.DataFrame of feature importances.

	
feature_selection(quick=False, verbose=False)

	Access to the feature selection routine. Uses BorutaPy,
an all-relevant feature selection method:
https://github.com/scikit-learn-contrib/boruta_py
http://danielhomola.com/2015/05/08/borutapy-an-all-relevant-feature-selection-method/

	Hint

	Normally you will not run this on your own, but will use it indirectly through the predict() methods.

	Parameters

	
	quick (bool) – Run fast but do a bad job.

	verbose (bool) – Print lots of quasi-informative messages.

	
static load(infile)

	Load a PTA.inference model from disk. This is complementary to the
PTA.inference.Ensemble.dump() method.

	Parameters

	infile (str) – The file to load a trained model from.

	Returns

	Returns the PTA.inference.Ensemble object loaded from the
input file.

	
plot_feature_importance(cutoff=0.05, figsize=(10, 12), layout=None, subplots=True, legend=False)

	Construct a somewhat crude plot of feature importances, useful for a
quick and dirty view of these values. If more than one feature present
in the model then a grid-layout is constructed and each individual
feature is displayed within a subplot. This function is a thin wrapper
around pandas.DataFrame.plot.barh().

	Parameters

	
	cutoff (float) – Remove any features that do not have greater importance
than this value across all plotted features. Just remove uninteresting
features to reduce the amount of visual noise in the figures.

	figsize (tuple) – A tuple specifying figure width, height in inches.

	layout (tuple) – A tuple specifying the row, column layout of the
sub-panels. By default we do our best, and it’s normally okay.

	subplots (bool) – Whether to plot each feature individually, or just
cram them all into one huge plot. Unless you have only a few features,
setting this option to False will look insane.

	legend (bool) – Whether to plot the legend.

	Returns

	Returns all the matplotlib axes

	
set_data(empirical_df, verbose=False)

	A convenience function to allow using pre-trained models to make
predictions on new datasets without retraining the model. This will
calculate summary statistics on input data (recycling metacommunity
traits if these were previously input), and reshape the statistics
to match the features selected during initial model construction.

This is only sensible if the data from the input community consists
of identical axes as the data used to build the model. This will be
useful if you have community data from mutiple islands in the same
archipelago, different communities that share a common features,
and share a metacommunity.

	Parameters

	
	empirical_df (pandas.DataFrame) – A DataFrame containing the empirical
data. This df has a very specific format which is documented here.

	verbose (bool) – Print progress information.

	
set_features(feature_list='')

	Specify the feature list to use for classification/regression. By
default the methods use all features, but if you want to specify exact
feature sets to use you may call this method.

	Parameters

	feature_list (list) – The list of features (summary statistics)
to retain for downstream analysis. Items in this list should
correspond exactly to summary statistics in the simulations or
else it will complain.

	
set_targets(target_list='')

	Specify the target (parameter) list to use for classification/regression. By
default the classifier will only consider psi and the regressor will
use all targets, but if you want to specify exact target sets to use you may
call this method.

	Parameters

	target_list (list) – The list of targets (model parameters)
to retain for downstream analysis. Items in this list should
correspond exactly to parameters in the simulations or
else it will complain.

Model Selection (Classification)

	
class PTA.inference.Classifier(empirical_df, sims='', algorithm='rf', verbose=False)

	This class wraps all the model selection machinery.

	Parameters

	
	empirical_df (pandas.DataFrame) – A DataFrame containing the empirical
data. This df has a very specific format which is documented here.

	sims (pd.DataFrame/string) – The path to the file containing all the simulations.

	algorithm (string) – One of the Supported Ensemble Methods to use for
parameter estimation.

	verbose (bool) – Print detailed progress information.

	
cross_val_predict(cv=5, quick=False, verbose=False)

	A thin wrapper around Ensemble.cross_val_predict() that basically just
calculates some Classifier specific statistics after the cross validation
prodecure. This function will calculate and populate class variables:

	Classifier.classification_report: Mean absolute error

	Parameters

	
	cv (int) – The number of cross-validation folds to perform.

	quick (bool) – Whether to downsample to run fast but do a bad job.

	verbose (bool) – Whether to print progress messages.

	Returns

	A numpy.array of model class predictions for each simulation
when it was a member of the held-out test set.

	
plot_confusion_matrix(ax='', figsize=(8, 8), cmap=<matplotlib.colors.LinearSegmentedColormap object>, cbar=False, title='', normalize=False, outfile='')

	Plot the confusion matrix for CV predictions. Assumes
Classifier.cross_val_predict() has been called. If not it complains
and tells you to do that first.

	Parameters

	
	ax (matplotlib.pyploat.axis) – The matplotlib axis to draw the plot
on.

	figsize (tuple) – If not passing in an axis, specify the size of
the figure to plot.

	cmap (matplotlib.pyplot.cm) – Specify the colormap to use.

	cbar (bool) – Whether to add a colorbar to the figure.

	title (str) – Add a title to the figure.

	normalize (bool) – Whether to normalize the bin values (scale to
1/# simulations).

	outfile (str) – Where to save the figure. This parameter should
include the desired output file format, e.g. .png, .svg or
.svg.

	Returns

	The matplotlib.axis on which the confusion matrix was
plotted.

	
predict(select_features=True, param_search=True, by_target=False, quick=False, force=False, verbose=False)

	Predict the community assembly model class probabilities.

	Parameters

	
	select_features (bool) – Whether to perform relevant feature selection.
This will remove features with little information useful for model
prediction. Should improve classification performance, but does take
time.

	param_search (bool) – Whether to perform ML classifier hyperparameter
tuning. If False then classification will be performed with default
classifier options, which will almost certainly result in poor performance,
but it will run really fast!.

	by_target (bool) – Whether to predict multiple target variables
simultaneously, or each individually and sequentially.

	quick (bool) – Reduce the number of retained simulations and the number
of feature selection and hyperparameter tuning iterations to make the
prediction step run really fast! Useful for testing.

	force (bool) – Force re-running feature selection and hyper-parameter
tuning. This is basically here to prevent you from shooting yourself
in the foot inside a for loop with select_features=True when
really what you want (most of the time) is to just run this once,
and call predict() multiple times without redoing this.

	verbose (bool) – Print detailed progress information.

	Returns

	A tuple including the predicted model and the probabilities per model class.

Parameter Estimation (Regression)

	
class PTA.inference.Regressor(empirical_df, sims='', algorithm='rfq', verbose=False)

	This class wraps all the parameter estimation machinery.

	Parameters

	
	empirical_df (pandas.DataFrame) – A DataFrame containing the empirical
data. This df has a very specific format which is documented here.

	sims (string) – The path to the file containing all the simulations.

	algorithm (string) – The ensemble method to use for parameter estimation.

	verbose (bool) – Print lots of status messages. Good for debugging,
or if you’re really curious about the process.

	
cross_val_predict(cv=5, quick=False, verbose=False)

	A thin wrapper around Ensemble.cross_val_predict() that basically just
calculates some Regressor specific statistics after the cross validation
prodecure. This function will calculate and populate class variables:

	Regressor.MAE: Mean absolute error

	Regressor.RMSE: Root mean squared error

	Regressor.vscore: Explained variance score

	Regressor.r2: Coefficient of determination regression score

As well as Regressor.cv_stats which is just a pandas.DataFrame of the
above stats.

	Parameters

	
	cv (int) – The number of cross-validation folds to perform.

	quick (bool) – Whether to downsample to run fast but do a bad job.

	verbose (bool) – Whether to print progress messages.

	Returns

	A numpy.array of parameter estimates for each simulation
when it was a member of the held-out test set.

	
plot_cv_predictions(ax='', figsize=(10, 5), figdims=(2, 3), n_cvs=1000, title='', targets='', outfile='')

	Plot the cross validation predictions for this Regressor. Assumes
Regressor.cross_val_predict() has been called. If not it complains
and tells you to do that first.

	Parameters

	
	ax (matplotlib.pyploat.axis) – The matplotlib axis to draw the plot
on.

	figsize (tuple) – If not passing in an axis, specify the size of
the figure to plot.

	figdims (tuple) – The number of rows and columns (specified in that
order) of the output figure. There will be one plot per target
parameter, so there should be at least as many available cells in
the specified grid.

	n_cvs (int) – The number of true/estimated points to plot on the
figure.

	title (str) – Add a title to the figure.

	targets (list) – Specify which of the targets to include in the plot.

	outfile (str) – Where to save the figure. This parameter should
include the desired output file format, e.g. .png, .svg or
.svg.

	Returns

	The flattened list of matplotlib axes on which the scatter
plots were drawn, one per target.

	
predict(select_features=True, param_search=True, by_target=False, quick=False, force=True, verbose=False)

	Predict parameter estimates for selected targets.

	Parameters

	
	select_features (bool) – Whether to perform relevant feature selection.
This will remove features with little information useful for parameter
estimation. Should improve parameter estimation performance, but does
take time.

	param_search (bool) – Whether to perform ML regressor hyperparamter
tuning. If False then prediction will be performed with default
options, which will almost certainly result in poor performance,
but it will run really fast!.

	by_target (bool) – Whether to estimate all parameters simultaneously,
or each individually and sequentially. Some ensemble methods are only
capable of performing individual parameter estimation, in which case
this parameter is forced to True.

	quick (bool) – Reduce the number of retained simulations and the number
of feature selection and hyperparameter tuning iterations to make the
prediction step run really fast! Useful for testing.

	force (bool) – Force re-running feature selection and hyper-parameter
tuning. This is basically here to prevent you from shooting yourself
in the foot inside a for loop with select_features=True when
really what you want (most of the time) is to just run this once,
and call predict() multiple times without redoing this.

	verbose (bool) – Print detailed progress information.

	Returns

	A pandas.DataFrame including the predicted value per target
parameter, and 95% prediction intervals if the ensemble method
specified for this Regressor supports it.

	
prediction_interval(interval=0.95, quick=False, verbose=False)

	Add upper and lower prediction interval for algorithms that support
quantile regression (rfq, gb).

	Hint

	You normaly won’t have to call this by hand, as it is incorporated automatically into the predict() methods. We allow access to in for experimental purposes.

	Parameters

	
	interval (float) – The prediction interval to generate.

	quick (bool) – Subsample the data to make it run fast, for testing.
The quick parameter doesn’t do anything for rfq because it’s
already really fast (the model doesn’t have to be refit).

	verbose (bool) – Print information about progress.

	Returns

	A pandas.DataFrame containing the model predictions and the
prediction intervals.

Classification Cross-Validation

	
PTA.inference.classification_cv(sims, sep=' ', algorithm='rf', quick=True, verbose=False)

	A convenience function to make it easier and more straightforward to run
classification CV. This basically wraps the work of generating
the synthetic community (dummy data), selecting which input data axes
to retain (determines which summary statistics are used by the ML),
creates the Classifier and calls Classifier.cross_val_predict(), and
Classifier.cross_val_score().

Feature selection is independent of the real data, so it doesn’t matter
that we passed in synthetic empirical data here. It chooses features
that are only relevant for each summary statistic. Searching for the
best model hyperparameters is the same, it is done independently of the
observed data.

	Parameters

	
	sims (str) – A pd.DataFrame or the file containing copious simulations.

	sep (str) – Separator for loading in a DataFrame, if this was passed.

	data_axes (list) – A list of the data axis identifiers to prune the
simulations with. One or more of ‘abundance’, ‘pi’, ‘dxy’, ‘trait’.
If this parameter is left blank it will use all data axes.

	algorithm (str) – One of the supported Ensemble.Regressor algorithm
identifier strings: ‘ab’, ‘gb’, ‘rf’, ‘rfq’.

	quick (bool) – Whether to run fast but do a bad job.

	verbose (bool) – Whether to print progress information.

	Returns

	Returns the trained PTA.inference.Classifier with the cross-
validation predictions for each simulation in the cv_preds member
variable and the cross-validation scores per K-fold in the cv_scores
member variable.

Parameter Estimation Cross-Validation

	
PTA.inference.parameter_estimation_cv(sims, sep=' ', data_axes='', algorithm='rf', quick=True, verbose=False)

	A convenience function to make it easier and more straightforward to run
parameter estimation CV. This basically wraps the work of generating
the synthetic community (dummy data), selecting which input data axes
to retain (determines which summary statistics are used by the ML),
creates the Regressor and calls Regressor.cross_val_predict() and
Regressor.cross_val.score().

Feature selection is independent of the real data, so it doesn’t matter
that we passed in synthetic empirical data here. It chooses features
that are only relevant for each summary statistic. Searching for the
best model hyperparameters is the same, it is done independently of the
observed data.

	Parameters

	
	simfile (str) – The file containing copious simulations.

	sep (str) – Separator for loading in a DataFrame, if this was passed.

	data_axes (list) – A list of the data axis identifiers to prune the
simulations with. One or more of ‘abundance’, ‘pi’, ‘dxy’, ‘trait’.
If this parameter is left blank it will use all data axes.

	algorithm (str) – One of the supported Ensemble.Regressor algorithm
identifier strings: ‘ab’, ‘gb’, ‘rf’, ‘rfq’.

	quick (bool) – Whether to run fast but do a bad job.

	verbose (bool) – Whether to print progress information.

	Returns

	Returns the trained MESS.inference.Regressor with the cross-
validation predictions for each simulation in the cv_preds member
variable and the cross-validation scores per K-fold in the cv_scores
member variable.

Posterior Predictive Checks

	
PTA.inference.posterior_predictive_check(empirical_df, parameter_estimates, ax='', ipyclient=None, est_only=False, nsims=100, outfile='', use_lambda=True, force=False, verbose=False)

	Currently not working.

Perform posterior predictive simulations. This function will take
parameter estimates and perform MESS simulations using these parameter
values. It will then plot the resulting summary statistics in PC
space, along with the summary statistics of the observed data. The
logic of posterior predictive checks is that if the estimated parameters
are a good fit to the data, then summary statistics generated using
these parameters should resemble those of the real data.

	Parameters

	
	empirical_df (pandas.DataFrame) – A DataFrame containing the empirical
data. This df has a very specific format which is documented here.

	parameter_estimates (pandas.DataFrame) – A DataFrame containing the
the parameter estimates from a MESS.inference.Regressor.predict() call
and optional prediction interval upper and lower bounds.

	ax (bool) – The matplotlib axis to use for plotting. If not specified
then a new axis will be created.

	ipyclient (ipyparallel.Client) – Allow to pass in an ipyparallel client to
allow parallelization of the posterior predictive simulations. If no
ipyclient is specified then simulations will be performed serially (i.e.
SLOW).

	est_only (bool) – If True, drop the lower and upper prediction
interval (PI) and just use the mean estimated parameters for generating
posterior predictive simulations. If False, and PIs exist, then
parameter values will be sampled uniformly between the lower and upper
PI.

	nsims (bool) – The number of posterior predictive simulations to perform.

	outfile (bool) – A file path for saving the figure. If not specified
the figure is simply not saved to the filesystem.

	use_lambda (bool) – Whether to generated simulations using time
as measured in _lambda or in generations.

	force (bool) – Force overwrite previously generated simulations. If not
force then re-running will append new simulations to previous ones.

	verbose (bool) – Print detailed progress information.

	Returns

	A matplotlib.pyplot.axis containing the plot.

Stats

Plotting

	
PTA.plotting.plot_simulations_hist(sims, ax='', figsize=(12, 6), feature_set='', nsims=1000, bins=20, alpha=0.6, select='', tol='', title='', outfile='', verbose=False)

	Simple histogram for each summary statistic. Useful for inspecting model
performance. Invariant summary statistics will be removed.

	Parameters

	
	sims (str) –

	figsize (tuple) –

	feature_set (list) –

	nsims (int) –

	bins (int) – The number of bins per histogram.

	alpha (float) – Set alpha value to determine transparency [0-1], larger
values increase opacity.

	select (int/float) –

	tol (int/float) –

	title (str) –

	outfile (str) –

	verbose (bool) –

	Returns

	Return a list of matplotlib.pyplot.axis on which the simulated
summary statistics have been plotted. This list can be _long_ depending
on how many statistics you plot.

	
PTA.plotting.plot_simulations_pca(sims, ax='', figsize=(8, 8), target='', feature_set='', loadings=False, nsims=1000, select='', tol='', title='', outfile='', verbose=False)

	Plot summary statistics for simulations projected into PC space.

	Parameters

	
	sims (str) –

	ax (matplotlib.pyplot.axis) –

	figsize (tuple) –

	target (str) –

	feature_set (list) –

	loadings (bool) – BROKEN! Whether to plot the loadings in the figure.

	nsims (int) –

	select (int/float) –

	tol (int/float) –

	title (str) –

	outfile (str) –

	verbose (bool) –

	Returns

	Return the matplotlib.pyplot.axis on which the simulations are
plotted.

Index

 C
 | D
 | E
 | F
 | L
 | P
 | R
 | S

C

 	
 	classification_cv() (in module PTA.inference)

 	Classifier (class in PTA.inference)

 	cross_val_predict() (PTA.inference.Classifier method)

 	(PTA.inference.Ensemble method)

 	(PTA.inference.Regressor method)

 	
 	cross_val_score() (PTA.inference.Ensemble method)

D

 	
 	dump() (PTA.inference.Ensemble method)

E

 	
 	Ensemble (class in PTA.inference)

F

 	
 	feature_importances() (PTA.inference.Ensemble method)

 	
 	feature_selection() (PTA.inference.Ensemble method)

L

 	
 	load() (PTA.inference.Ensemble static method)

P

 	
 	parameter_estimation_cv() (in module PTA.inference)

 	plot_confusion_matrix() (PTA.inference.Classifier method)

 	plot_cv_predictions() (PTA.inference.Regressor method)

 	plot_feature_importance() (PTA.inference.Ensemble method)

 	plot_simulations_hist() (in module PTA.plotting)

 	
 	plot_simulations_pca() (in module PTA.plotting)

 	posterior_predictive_check() (in module PTA.inference)

 	predict() (PTA.inference.Classifier method)

 	(PTA.inference.Regressor method)

 	prediction_interval() (PTA.inference.Regressor method)

R

 	
 	Regressor (class in PTA.inference)

S

 	
 	set_data() (PTA.inference.Ensemble method)

 	
 	set_features() (PTA.inference.Ensemble method)

 	set_targets() (PTA.inference.Ensemble method)

Release Notes

0.0.11

October 03, 2019

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to MESS’s documentation!

 		
 Installation

 		
 Method 1: Install pre-built binary from conda

 		
 Intro CLI Tutorial

 		
 Intro API Tutorial

 		
 Inference Procedure

 		
 ML Inference

 		
 Supported Ensemble Methods

 		
 Model Selection

 		
 Parameter Estimation

 		
 Community Assembly Parameters

 		
 simulation_name

 		
 project_dir

 		
 generations

 		
 community_assembly_model

 		
 speciation_model

 		
 mutation_rate

 		
 alpha

 		
 sequence_length

 		
 S_m

 		
 J_m

 		
 speciation_rate

 		
 death_proportion

 		
 trait_rate_meta

 		
 ecological_strength

 		
 name

 		
 J

 		
 m

 		
 speciation_prob

 		
 API Documentation

 		
 Simulation model

 		
 Region

 		
 Metacommunity

 		
 Local Community

 		
 Inference Procedure

 		
 Model Selection (Classification)

 		
 Parameter Estimation (Regression)

 		
 Classification Cross-Validation

 		
 Parameter Estimation Cross-Validation

 		
 Posterior Predictive Checks

 		
 Stats

 		
 Plotting

_static/up.png

_static/up-pressed.png

